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1. Introduction 

 
   A closed loop natural circulation system 
employs thermally induced density gradients in 
single phase or two-phase liquid form to induce 
circulation of the working fluid thereby obviating 
the need for any mechanical moving parts such as 
pumps and pump controls. This increases the reliability 
and safety of the cooling system and reduces 
installation, operation and maintenance costs. That is 
the reason natural circulation cooling has been 
considered in advanced reactor core cooling and in 
engineered safety systems. Natural circulation cooling 
has been proposed to remove reactor decay heat by 
external vessel cooling for in-vessel core retention 
during sever accident scenario [1,2]. Recently in 
APR1400 reactor core catcher design natural 
circulation cooling is proposed to stabilize and cool the 
corium ejected from the reactor vessel following core 
melt and breach of reactor vessel [3]. The natural 
circulation flow is similar to external vessel cooling 
where water flows through an inclined narrow gap 
below hot surface and is heated to produce boiling. 
The two-phase natural circulation enables cooling of 
the corium pool collected on core catcher.  Due to 
importance of this problem this paper focuses 
simulation of the two-phase natural circulation through 
inclined gap using air-water system. Scaling criteria 
for air-water loop are derived that enable simulation of 
the flow regimes and natural circulation flow rates in 
such systems using air-water system. 
 

2. Scaling of Two-Phase Natural Circulation  
 
    In the prototype core catcher cooling system the 
two-phase natural circulation is driven by steam-water 
where boiling process at inclined region creates 
sufficient bubbles to establish stable flow.  For a two-
phase natural circulation system, similarity groups 
have been developed from a perturbation analysis 
based on the one-dimensional drift flux model.  The set 
of mass, momentum and energy equations are 
integrated along the loop, and the transfer functions 
between the inlet perturbation and various variables are 
obtained. The four equation drift flux model consisting 
of the mixture mass, momentum and energy equations 
and vapor continuity equation is analytically integrated 
along the flow path.  From this, the integral response 
functions between various variables such as the 
velocity, density, void fraction, enthalpy and pressure 
drop are obtained.  The non-dimensionalization of 
these response functions yields the key integral scaling 

parameters.  From these, the scaling criteria for 
dynamic simulation can be obtained [4].  The 
important dimensionless groups that characterize the 
kinematic, dynamic and energy similarities are for 
two-phase are given in Table 1.  
 

Table 1. Two-Phase Similarity Parameters 
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      The scaling of the natural circulation with air air-
water system requires fluid-fluid scaling consideration 
for flow dynamic similarity. The void fraction is 
related to quality through void quality relation. The 
drift velocity between gas liquid phase The  xe the 
vapor quality at the exit of the heated section in 
prototype from the similarity of the Zuber and 

subcooling numbers yields:   1
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indicates that the vapor quality should be scaled by the 
density ratio.  If this condition is satisfied, the friction 
similarity in terms of Nfi and Noi can be approximated 
by dropping the terms related to the two-phase friction 
multiplier.   
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flow regime, this group parameter also characterizes 
the flow pattern.  The density ratio group, given by the 
(/g) term, scales the fluids.  This also appears in the 
groups Nsub, Npch, Nf, and No. The representative 
constitutive equation for the relative motion based on 
the drift velocity correlation is given by: 
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     The classical void-quality correlation 
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3. Air-Water Simulation  

 
Simulation of steam-water natural circulation is 

carried out with air-water flow in an inclined 
rectangular channel with set of geometrical parameters 
corresponding to a core catcher design by Song et al. 
[4]. A schematic of the test geometry is shown in 
Figure 1, where the steam generated is replaced by air 
injection rate. The heat flux corresponding to the decay 
heat is simulated with air flux to the test section to 
produce equivalent flow quality.  

 

 
Figure 1. Schematic of air-water simulation loop 

 
Design calculations were carried out for typical core 

catcher design to estimate the expected natural 
circulation rates. In Figure 2 and 3 the natural 
circulation flow rate of the water and two-phase 
pressure drop are shown for different air injection rate 
expressed as void fraction for a select downcomer pipe 

size. These results can be scaled to steam water system 
using scaling consideration presented  in section 2.    
 

 
Fig. 2.  Natural circulation flow rate 

 
Fig. 3. Two-phase pressure drop 
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